Telecom Users Churn Machine Learning model¶
This notebook looks into using Python-based Machine-learning and Data Science libraries in an attempt to build a machine learning model capable of identifying whether or not people will renew their contract.
Any business wants to maximize the number of customers. To achieve this goal, it is important not only to try to attract new ones, but also to retain existing ones. Retaining a client will cost the company less than attracting a new one. In addition, a new client may be weakly interested in business services and it will be difficult to work with him, while old clients already have the necessary data on interaction with the service.
Accordingly, predicting the churn, we can react in time and try to keep the client who wants to leave. Based on the data about the services that the client uses, we can make him a special offer, trying to change his decision to leave the operator. This will make the task of retention easier to implement than the task of attracting new users, about which we do not know anything yet.
1. Problem Definition¶
Statement :
The task is to analyze the data and predict the churn of users (to identify people who will and will not renew their contract).
Churn :¶
Churn is a measurement of the percentage of accounts that cancel or choose not to renew their subscriptions. Churn is the measure of how many customers stop using a product. This can be measured based on actual usage or failure to renew (when the product is sold using a subscription model).
2. Data¶
The data we are using comes from Kaggle:
https://www.kaggle.com/radmirzosimov/telecom-users-dataset
3. Evaluation¶
If we can reach maximum accuracy at predicting whether or not a patient will renew his subscrption.
4. Features¶
- customerID - customer id
- gender - client gender (male / female)
- SeniorCitizen - is the client retired (1, 0)
- Partner - is the client married (Yes, No)
- tenure - how many months a person has been a client of the company
- PhoneService - is the telephone service connected (Yes, No)
- MultipleLines - are multiple phone lines connected (Yes, No, No phone service)
- InternetService - client's Internet service provider (DSL, Fiber optic, No)
- OnlineSecurity - is the online security service connected (Yes, No, No internet service)
- OnlineBackup - is the online backup service activated (Yes, No, No internet service)
- DeviceProtection - does the client have equipment insurance (Yes, No, No internet service)
- TechSupport - is the technical support service connected (Yes, No, No internet service)
- StreamingTV - is the streaming TV service connected (Yes, No, No internet service)
- StreamingMovies - is the streaming cinema service activated (Yes, No, No internet service)
- Contract - type of customer contract (Month-to-month, One year, Two year)
- PaperlessBilling - whether the client uses paperless billing (Yes, No)
- PaymentMethod - payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic))
- MonthlyCharges - current monthly payment
- TotalCharges - the total amount that the client paid for the services for the entire time
- Churn - whether there was a churn (Yes or No)
The work should include the following ma*ndatory items:**
- Description of the data (with the calculation of basic statistics);
- Research of dependencies and formulation of hypotheses;
- Building models for predicting the outflow (with justification for the choice of a particular model) based on tested hypotheses and identified relationships
- Comparison of the quality of the obtained models.
# Importing the tools we need
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn
# Getting our data into our Jupyter notebook
df = pd.read_csv("data/telecom_users.csv")
df.head()
Unnamed: 0 | customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | ... | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | Churn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1869 | 7010-BRBUU | Male | 0 | Yes | Yes | 72 | Yes | Yes | No | ... | No internet service | No internet service | No internet service | No internet service | Two year | No | Credit card (automatic) | 24.10 | 1734.65 | No |
1 | 4528 | 9688-YGXVR | Female | 0 | No | No | 44 | Yes | No | Fiber optic | ... | Yes | No | Yes | No | Month-to-month | Yes | Credit card (automatic) | 88.15 | 3973.2 | No |
2 | 6344 | 9286-DOJGF | Female | 1 | Yes | No | 38 | Yes | Yes | Fiber optic | ... | No | No | No | No | Month-to-month | Yes | Bank transfer (automatic) | 74.95 | 2869.85 | Yes |
3 | 6739 | 6994-KERXL | Male | 0 | No | No | 4 | Yes | No | DSL | ... | No | No | No | Yes | Month-to-month | Yes | Electronic check | 55.90 | 238.5 | No |
4 | 432 | 2181-UAESM | Male | 0 | No | No | 2 | Yes | No | DSL | ... | Yes | No | No | No | Month-to-month | No | Electronic check | 53.45 | 119.5 | No |
5 rows × 22 columns
Looks like our dataframe has an unnamed column and we are not able to figure out what it is so, let's delete it and continue further.¶
# To delete the unnamed column
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.head()
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | ... | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | Churn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7010-BRBUU | Male | 0 | Yes | Yes | 72 | Yes | Yes | No | No internet service | ... | No internet service | No internet service | No internet service | No internet service | Two year | No | Credit card (automatic) | 24.10 | 1734.65 | No |
1 | 9688-YGXVR | Female | 0 | No | No | 44 | Yes | No | Fiber optic | No | ... | Yes | No | Yes | No | Month-to-month | Yes | Credit card (automatic) | 88.15 | 3973.2 | No |
2 | 9286-DOJGF | Female | 1 | Yes | No | 38 | Yes | Yes | Fiber optic | No | ... | No | No | No | No | Month-to-month | Yes | Bank transfer (automatic) | 74.95 | 2869.85 | Yes |
3 | 6994-KERXL | Male | 0 | No | No | 4 | Yes | No | DSL | No | ... | No | No | No | Yes | Month-to-month | Yes | Electronic check | 55.90 | 238.5 | No |
4 | 2181-UAESM | Male | 0 | No | No | 2 | Yes | No | DSL | Yes | ... | Yes | No | No | No | Month-to-month | No | Electronic check | 53.45 | 119.5 | No |
5 rows × 21 columns
# To get the insights of our data we are working with
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 5986 entries, 0 to 5985 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 customerID 5986 non-null object 1 gender 5986 non-null object 2 SeniorCitizen 5986 non-null int64 3 Partner 5986 non-null object 4 Dependents 5986 non-null object 5 tenure 5986 non-null int64 6 PhoneService 5986 non-null object 7 MultipleLines 5986 non-null object 8 InternetService 5986 non-null object 9 OnlineSecurity 5986 non-null object 10 OnlineBackup 5986 non-null object 11 DeviceProtection 5986 non-null object 12 TechSupport 5986 non-null object 13 StreamingTV 5986 non-null object 14 StreamingMovies 5986 non-null object 15 Contract 5986 non-null object 16 PaperlessBilling 5986 non-null object 17 PaymentMethod 5986 non-null object 18 MonthlyCharges 5986 non-null float64 19 TotalCharges 5986 non-null object 20 Churn 5986 non-null object dtypes: float64(1), int64(2), object(18) memory usage: 982.2+ KB
# To check for any empty entries in our data
df.isna().sum()
customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 TotalCharges 0 Churn 0 dtype: int64
df.columns
Index(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents', 'tenure', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'], dtype='object')
df.MonthlyCharges.plot.hist(color="orange")
<matplotlib.axes._subplots.AxesSubplot at 0x26afe5dd308>
df["MonthlyCharges"].median()
70.4
df.head()
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | ... | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | Churn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7010-BRBUU | Male | 0 | Yes | Yes | 72 | Yes | Yes | No | No internet service | ... | No internet service | No internet service | No internet service | No internet service | Two year | No | Credit card (automatic) | 24.10 | 1734.65 | No |
1 | 9688-YGXVR | Female | 0 | No | No | 44 | Yes | No | Fiber optic | No | ... | Yes | No | Yes | No | Month-to-month | Yes | Credit card (automatic) | 88.15 | 3973.2 | No |
2 | 9286-DOJGF | Female | 1 | Yes | No | 38 | Yes | Yes | Fiber optic | No | ... | No | No | No | No | Month-to-month | Yes | Bank transfer (automatic) | 74.95 | 2869.85 | Yes |
3 | 6994-KERXL | Male | 0 | No | No | 4 | Yes | No | DSL | No | ... | No | No | No | Yes | Month-to-month | Yes | Electronic check | 55.90 | 238.5 | No |
4 | 2181-UAESM | Male | 0 | No | No | 2 | Yes | No | DSL | Yes | ... | Yes | No | No | No | Month-to-month | No | Electronic check | 53.45 | 119.5 | No |
5 rows × 21 columns
# Determining no. Senior citizens
df["SeniorCitizen"].value_counts()
0 5020 1 966 Name: SeniorCitizen, dtype: int64
# Finding no. of rows
len(df)
5986
# Check for Male-Female
df["gender"].value_counts()
Male 3050 Female 2936 Name: gender, dtype: int64
Most of our data labels are in string format to get them used we need to convert them into categories
¶
# Check for dtype-object (strings)
pd.api.types.is_string_dtype(df["Partner"])
True
# Finding the columns which contain strings (dtype-object)
for label, content in df.items():
if pd.api.types.is_string_dtype(content):
print(label)
customerID gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling PaymentMethod TotalCharges Churn
# converting all of the string values into category values
for label, content in df.items():
if pd.api.types.is_string_dtype(content):
df[label]=content.astype("category").cat.as_ordered()
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 5986 entries, 0 to 5985 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 customerID 5986 non-null category 1 gender 5986 non-null category 2 SeniorCitizen 5986 non-null int64 3 Partner 5986 non-null category 4 Dependents 5986 non-null category 5 tenure 5986 non-null int64 6 PhoneService 5986 non-null category 7 MultipleLines 5986 non-null category 8 InternetService 5986 non-null category 9 OnlineSecurity 5986 non-null category 10 OnlineBackup 5986 non-null category 11 DeviceProtection 5986 non-null category 12 TechSupport 5986 non-null category 13 StreamingTV 5986 non-null category 14 StreamingMovies 5986 non-null category 15 Contract 5986 non-null category 16 PaperlessBilling 5986 non-null category 17 PaymentMethod 5986 non-null category 18 MonthlyCharges 5986 non-null float64 19 TotalCharges 5986 non-null category 20 Churn 5986 non-null category dtypes: category(18), float64(1), int64(2) memory usage: 608.1 KB
df.Partner.cat.categories
Index(['No', 'Yes'], dtype='object')
df.Partner.cat.codes
0 1 1 0 2 1 3 0 4 0 .. 5981 1 5982 1 5983 1 5984 0 5985 0 Length: 5986, dtype: int8
Now, we' ve access to all of our data in form of numbers¶
# Our data is ready, saving this preprocessed data into a new file
df.to_csv("data/train.csv",
index=False)
# Importing preprocessed data
df = pd.read_csv("data/train.csv",
low_memory=False)
df.head()
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | ... | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | Churn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7010-BRBUU | Male | 0 | Yes | Yes | 72 | Yes | Yes | No | No internet service | ... | No internet service | No internet service | No internet service | No internet service | Two year | No | Credit card (automatic) | 24.10 | 1734.65 | No |
1 | 9688-YGXVR | Female | 0 | No | No | 44 | Yes | No | Fiber optic | No | ... | Yes | No | Yes | No | Month-to-month | Yes | Credit card (automatic) | 88.15 | 3973.2 | No |
2 | 9286-DOJGF | Female | 1 | Yes | No | 38 | Yes | Yes | Fiber optic | No | ... | No | No | No | No | Month-to-month | Yes | Bank transfer (automatic) | 74.95 | 2869.85 | Yes |
3 | 6994-KERXL | Male | 0 | No | No | 4 | Yes | No | DSL | No | ... | No | No | No | Yes | Month-to-month | Yes | Electronic check | 55.90 | 238.5 | No |
4 | 2181-UAESM | Male | 0 | No | No | 2 | Yes | No | DSL | Yes | ... | Yes | No | No | No | Month-to-month | No | Electronic check | 53.45 | 119.5 | No |
5 rows × 21 columns
# Recheck for missing values
df.isna().sum()
customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 TotalCharges 0 Churn 0 dtype: int64
Filling and turning categorical variables into numbers
# Check for columns which aren't numeric
for label, content in df.items():
if not pd.api.types.is_numeric_dtype(content):
print(label)
customerID gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling PaymentMethod TotalCharges Churn
# Turning categorical numbers into numbers and fill missing
for label, content in df.items():
if not pd.api.types.is_numeric_dtype(content):
# Turn categories into numbers and add +1
df[label] = pd.Categorical(content).codes+1
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 5986 entries, 0 to 5985 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 customerID 5986 non-null int16 1 gender 5986 non-null int8 2 SeniorCitizen 5986 non-null int64 3 Partner 5986 non-null int8 4 Dependents 5986 non-null int8 5 tenure 5986 non-null int64 6 PhoneService 5986 non-null int8 7 MultipleLines 5986 non-null int8 8 InternetService 5986 non-null int8 9 OnlineSecurity 5986 non-null int8 10 OnlineBackup 5986 non-null int8 11 DeviceProtection 5986 non-null int8 12 TechSupport 5986 non-null int8 13 StreamingTV 5986 non-null int8 14 StreamingMovies 5986 non-null int8 15 Contract 5986 non-null int8 16 PaperlessBilling 5986 non-null int8 17 PaymentMethod 5986 non-null int8 18 MonthlyCharges 5986 non-null float64 19 TotalCharges 5986 non-null int16 20 Churn 5986 non-null int8 dtypes: float64(1), int16(2), int64(2), int8(16) memory usage: 257.3 KB
df.head().T
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
customerID | 4253.0 | 5807.00 | 5578.00 | 4244.0 | 1271.00 |
gender | 2.0 | 1.00 | 1.00 | 2.0 | 2.00 |
SeniorCitizen | 0.0 | 0.00 | 1.00 | 0.0 | 0.00 |
Partner | 2.0 | 1.00 | 2.00 | 1.0 | 1.00 |
Dependents | 2.0 | 1.00 | 1.00 | 1.0 | 1.00 |
tenure | 72.0 | 44.00 | 38.00 | 4.0 | 2.00 |
PhoneService | 2.0 | 2.00 | 2.00 | 2.0 | 2.00 |
MultipleLines | 3.0 | 1.00 | 3.00 | 1.0 | 1.00 |
InternetService | 3.0 | 2.00 | 2.00 | 1.0 | 1.00 |
OnlineSecurity | 2.0 | 1.00 | 1.00 | 1.0 | 3.00 |
OnlineBackup | 2.0 | 3.00 | 1.00 | 1.0 | 1.00 |
DeviceProtection | 2.0 | 3.00 | 1.00 | 1.0 | 3.00 |
TechSupport | 2.0 | 1.00 | 1.00 | 1.0 | 1.00 |
StreamingTV | 2.0 | 3.00 | 1.00 | 1.0 | 1.00 |
StreamingMovies | 2.0 | 1.00 | 1.00 | 3.0 | 1.00 |
Contract | 3.0 | 1.00 | 1.00 | 1.0 | 1.00 |
PaperlessBilling | 1.0 | 2.00 | 2.00 | 2.0 | 1.00 |
PaymentMethod | 2.0 | 2.00 | 1.00 | 3.0 | 3.00 |
MonthlyCharges | 24.1 | 88.15 | 74.95 | 55.9 | 53.45 |
TotalCharges | 1067.0 | 2902.00 | 2127.00 | 1734.0 | 309.00 |
Churn | 1.0 | 1.00 | 2.00 | 1.0 | 1.00 |
Now our data is numeric and has no missing values so we can start building our Machine Learning Model
# ML models and some extra tools
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import plot_roc_curve
%%time
# Instatiate model
model = RandomForestClassifier(n_jobs=-1,
random_state=42)
# Fitting the model
model.fit(df.drop("Churn", axis=1), df["Churn"])
Wall time: 289 ms
RandomForestClassifier(n_jobs=-1, random_state=42)
# Scoring the model
model.score(df.drop("Churn", axis=1), df["Churn"]) * 100
100.0
df.head(20)
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | ... | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | Churn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4253 | 2 | 0 | 2 | 2 | 72 | 2 | 3 | 3 | 2 | ... | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 24.10 | 1067 | 1 |
1 | 5807 | 1 | 0 | 1 | 1 | 44 | 2 | 1 | 2 | 1 | ... | 3 | 1 | 3 | 1 | 1 | 2 | 2 | 88.15 | 2902 | 1 |
2 | 5578 | 1 | 1 | 2 | 1 | 38 | 2 | 3 | 2 | 1 | ... | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 74.95 | 2127 | 2 |
3 | 4244 | 2 | 0 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | ... | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 55.90 | 1734 | 1 |
4 | 1271 | 2 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | ... | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 53.45 | 309 | 1 |
5 | 2560 | 1 | 0 | 2 | 1 | 70 | 1 | 2 | 1 | 3 | ... | 3 | 3 | 1 | 3 | 3 | 2 | 1 | 49.85 | 2508 | 1 |
6 | 1473 | 1 | 0 | 1 | 1 | 33 | 2 | 3 | 2 | 3 | ... | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 90.65 | 2220 | 1 |
7 | 2592 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | ... | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 24.90 | 1757 | 1 |
8 | 5364 | 2 | 0 | 1 | 1 | 39 | 1 | 2 | 1 | 1 | ... | 3 | 3 | 1 | 1 | 2 | 1 | 4 | 35.55 | 490 | 1 |
9 | 4842 | 2 | 1 | 1 | 1 | 55 | 2 | 3 | 2 | 3 | ... | 3 | 3 | 3 | 3 | 1 | 2 | 3 | 116.50 | 4420 | 1 |
10 | 2724 | 2 | 0 | 2 | 2 | 52 | 2 | 1 | 1 | 1 | ... | 3 | 3 | 3 | 1 | 2 | 2 | 3 | 68.75 | 2590 | 1 |
11 | 1225 | 1 | 0 | 2 | 2 | 30 | 1 | 2 | 1 | 1 | ... | 1 | 3 | 3 | 3 | 1 | 1 | 2 | 51.20 | 859 | 2 |
12 | 1353 | 2 | 1 | 2 | 1 | 60 | 2 | 3 | 2 | 1 | ... | 1 | 3 | 3 | 3 | 1 | 2 | 3 | 99.00 | 4230 | 1 |
13 | 1484 | 2 | 0 | 2 | 2 | 50 | 2 | 3 | 1 | 1 | ... | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 54.90 | 1943 | 1 |
14 | 1618 | 1 | 0 | 1 | 1 | 32 | 2 | 3 | 2 | 3 | ... | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 109.55 | 2675 | 1 |
15 | 1044 | 2 | 0 | 2 | 1 | 51 | 2 | 3 | 2 | 1 | ... | 3 | 1 | 3 | 3 | 2 | 2 | 1 | 106.80 | 3912 | 1 |
16 | 1457 | 2 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | ... | 1 | 3 | 1 | 1 | 1 | 2 | 4 | 74.30 | 4917 | 1 |
17 | 3069 | 1 | 0 | 2 | 2 | 69 | 2 | 3 | 3 | 2 | ... | 2 | 2 | 2 | 2 | 3 | 2 | 1 | 25.60 | 996 | 1 |
18 | 5240 | 1 | 0 | 2 | 2 | 42 | 2 | 3 | 2 | 1 | ... | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 94.20 | 3066 | 2 |
19 | 350 | 2 | 0 | 2 | 1 | 14 | 1 | 2 | 1 | 1 | ... | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 46.35 | 4554 | 2 |
20 rows × 21 columns
df["Churn"].value_counts()
1 4399 2 1587 Name: Churn, dtype: int64
Modelling¶
# Splitting data into X and Y
X = df.drop("Churn", axis=1)
Y = df["Churn"]
X.head()
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | OnlineBackup | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4253 | 2 | 0 | 2 | 2 | 72 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 24.10 | 1067 |
1 | 5807 | 1 | 0 | 1 | 1 | 44 | 2 | 1 | 2 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 2 | 2 | 88.15 | 2902 |
2 | 5578 | 1 | 1 | 2 | 1 | 38 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 74.95 | 2127 |
3 | 4244 | 2 | 0 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 55.90 | 1734 |
4 | 1271 | 2 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 53.45 | 309 |
Y.head()
0 1 1 1 2 2 3 1 4 1 Name: Churn, dtype: int8
# Splitting data into train and test sets
np.random.seed(42)
X_train, X_test, Y_train, Y_test = train_test_split(X,
Y,
test_size=0.2)
X_train.head()
customerID | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines | InternetService | OnlineSecurity | OnlineBackup | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract | PaperlessBilling | PaymentMethod | MonthlyCharges | TotalCharges | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5737 | 3350 | 1 | 1 | 2 | 1 | 28 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 4 | 25.70 | 4893 |
829 | 5554 | 1 | 0 | 1 | 1 | 6 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 3 | 1 | 2 | 3 | 47.95 | 2283 |
2694 | 754 | 2 | 0 | 1 | 1 | 55 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 96.80 | 3797 |
1496 | 5130 | 1 | 0 | 2 | 2 | 54 | 2 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 3 | 2 | 1 | 59.80 | 2424 |
438 | 5511 | 1 | 0 | 1 | 1 | 29 | 2 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 19.35 | 4227 |
Y_train.head()
5737 1 829 2 2694 2 1496 1 438 1 Name: Churn, dtype: int8
We will be trying 3 different Machine Learning models:¶
- Logistic Regression
- K-Nearest Neighbours Classifier
- Random Forest Classifier
# Put models in a dictionary
models = {"Logistic Regression": LogisticRegression(solver='liblinear'),
"KNN": KNeighborsClassifier(),
"Random Forest": RandomForestClassifier()}
# Create a function to fit and score models
def fit_and_score(models, X_train, X_test, Y_train, Y_test):
"""
Fits and evaluates given machine learning models.
models : a dict of differetn Scikit-Learn machine learning models
X_train : training data (no labels)
X_test : testing data (no labels)
Y_train : training labels
Y_test : test labels
"""
# Set random seed
np.random.seed(42)
# Make a dictionary to keep model scores
model_scores = {}
# Loop through models
for name, model in models.items():
# Fit the model to the data
model.fit(X_train, Y_train)
# Evaluate the model and append its score to model_scores
model_scores[name] = model.score(X_test, Y_test)
return model_scores
model_scores = fit_and_score(models=models,
X_train=X_train,
X_test=X_test,
Y_train=Y_train,
Y_test=Y_test)
model_scores
{'Logistic Regression': 0.8005008347245409, 'KNN': 0.6869782971619366, 'Random Forest': 0.7863105175292153}
Model Comparison¶
model_compare = pd.DataFrame(model_scores, index=["accuracy"])
model_compare.T.plot.bar(color="orange");
Improving and Analysing our models :
- Hyperparameter tuning
- Feature Importance
- Confusion Matrix
- Cross-Validation
- Precision
- Recall
- F1 score
- Classification Report
- Reciever Operating Characteristic curve (ROC)
- Area under the curve (AUC)
Tuning our models with Randomized Search CV :¶
LogisticRegression()
RandomForestClassifier()
KNeighborsClassifier()
# Creating grid for LogisticRegression()
log_reg_grid = {"C":np.logspace(-4,4,20),
"solver" : ["newton-cg", "lbfgs", "liblinear", "sag", "saga"],
"penalty" : ["none", "l1", "l2", "elasticnet"],
"max_iter" : np.arange(1, 200, 5)}
# Creating grid for RandomForestClassifier()
rf_grid = {"n_estimators": np.arange(10,1000,50),
"max_features": np.arange(1, 100, 10),
"max_depth": [None, 3,5,10],
"min_samples_split": np.arange(2,100, 4),
"min_samples_leaf": np.arange(1,100, 5)}
Tuning our models with RadomizedSearchCV()
%%time
# Tuning LogisticRegression
np.random.seed(42)
# Setting up random hyperparameter search for LogisticRegression
rs_log_reg = RandomizedSearchCV(LogisticRegression(),
param_distributions=log_reg_grid,
cv=5,
n_iter=500,
verbose=True)
# Fit random hyperparameter search model for LogisticRegression
rs_log_reg.fit(X_train, Y_train);
Fitting 5 folds for each of 500 candidates, totalling 2500 fits
F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:426: LineSearchWarning: Rounding errors prevent the line search from converging warn(msg, LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:195: UserWarning: Line Search failed warnings.warn('Line Search failed') F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:426: LineSearchWarning: Rounding errors prevent the line search from converging warn(msg, LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:195: UserWarning: Line Search failed warnings.warn('Line Search failed') F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 451, in _check_solver " got solver={}.".format(solver)) ValueError: Only 'saga' solver supports elasticnet penalty, got solver=liblinear. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:426: LineSearchWarning: Rounding errors prevent the line search from converging warn(msg, LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:195: UserWarning: Line Search failed warnings.warn('Line Search failed') F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:426: LineSearchWarning: Rounding errors prevent the line search from converging warn(msg, LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:195: UserWarning: Line Search failed warnings.warn('Line Search failed') F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:426: LineSearchWarning: Rounding errors prevent the line search from converging warn(msg, LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:195: UserWarning: Line Search failed warnings.warn('Line Search failed') F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\svm\_base.py:986: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1315, in fit " got (l1_ratio=%r)" % self.l1_ratio) ValueError: l1_ratio must be between 0 and 1; got (l1_ratio=None) FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver sag supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\optimize.py:203: ConvergenceWarning: newton-cg failed to converge. Increase the number of iterations. "number of iterations.", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge "the coef_ did not converge", ConvergenceWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:466: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\scipy\optimize\linesearch.py:314: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:1323: UserWarning: Setting penalty='none' will ignore the C and l1_ratio parameters "Setting penalty='none' will ignore the C and l1_ratio " F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py:765: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver newton-cg supports only 'l2' or 'none' penalties, got elasticnet penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 444, in _check_solver "got %s penalty." % (solver, penalty)) ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty. FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 1306, in fit solver = _check_solver(self.solver, self.penalty, self.dual) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\linear_model\_logistic.py", line 455, in _check_solver "penalty='none' is not supported for the liblinear solver" ValueError: penalty='none' is not supported for the liblinear solver FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_search.py:921: UserWarning: One or more of the test scores are non-finite: [ nan 0.79678362 nan 0.75167265 0.78508932 nan nan nan 0.79469484 0.79177165 0.76190732 nan nan 0.73224739 0.79720137 nan 0.76984378 nan 0.79573868 nan nan 0.79532158 nan nan 0.76984466 0.74331756 nan 0.79678362 nan 0.79887217 0.78550664 0.73183007 0.73433725 0.79678362 nan nan 0.7921881 0.7633687 0.79553013 0.79365296 0.77652895 0.76149 0.73809683 nan nan 0.77130625 0.76629298 0.79678362 nan nan 0.75041852 nan 0.76483051 nan nan nan nan nan nan nan 0.76942625 0.7932339 nan nan 0.77527547 nan 0.77402199 nan 0.79344223 0.7320384 0.74352611 0.79678362 nan 0.76378645 0.78863925 0.79678296 0.79615666 0.79490448 0.79678362 0.79448564 nan 0.77652895 0.791146 0.7339195 nan 0.79761913 nan nan 0.79260651 0.7882215 0.79365296 0.73559095 0.79594942 0.76963502 0.7437351 0.76733704 nan nan nan nan 0.78655179 0.79281527 0.77527569 0.75250707 nan 0.75731245 nan nan nan 0.77172466 0.79573934 nan 0.7750667 nan 0.78070344 0.79678362 nan 0.79511238 0.78613534 0.7320384 0.73182963 nan 0.79678362 0.79365166 0.79761869 nan nan 0.77464829 nan 0.79615666 0.73559117 0.763995 0.73726154 0.79678362 0.79636739 0.76942625 nan nan nan 0.76879994 nan nan 0.73329276 nan 0.79239861 nan 0.78529765 0.79678362 nan nan nan nan 0.7752759 nan nan nan nan nan 0.76942603 0.79678362 0.73350153 nan nan nan 0.76274195 0.76942581 0.791771 0.73183007 nan nan nan 0.7750667 nan 0.79448651 0.75125468 nan 0.78070475 0.79678362 nan nan 0.79636586 nan 0.79740992 0.77005321 0.78676012 0.79699238 nan 0.75668593 nan nan 0.79887043 0.77443996 0.77506692 nan 0.7930247 nan 0.76378645 nan nan nan nan 0.79678362 nan 0.79469484 nan 0.76378645 0.79636586 0.79782768 0.79803623 0.77443974 nan nan 0.7704714 0.78676012 0.73182963 nan nan nan 0.79782768 0.76963502 nan 0.78634259 nan 0.7750667 0.79678362 0.79678362 0.79678362 0.79678362 0.79532093 nan 0.79720137 nan nan nan 0.79678362 nan 0.79323325 0.77443974 0.7621163 nan nan 0.79323325 0.76169833 0.77067973 0.76733704 nan 0.76587522 nan 0.73182963 0.79615666 nan 0.73182963 0.79553013 0.79678274 nan nan nan nan nan 0.79427818 nan 0.79720159 nan 0.73559074 0.79511347 0.77527547 0.79553013 0.79678362 0.73182963 0.79678362 nan nan nan 0.79260825 0.79156376 0.73433725 0.78049555 nan nan 0.79448804 nan 0.73496421 0.75000164 nan 0.78404613 nan 0.79678362 nan 0.79177165 0.77360423 nan nan 0.73182963 nan 0.79678362 0.73224717 nan nan 0.77360467 nan nan nan 0.73726154 nan nan 0.79824565 nan nan nan nan nan nan 0.75334236 nan nan 0.77652895 0.77360423 nan nan nan 0.75689492 0.79490427 nan nan nan 0.785297 nan nan nan nan nan 0.76733704 nan nan 0.7621163 0.76420442 nan nan 0.79239817 nan 0.79720137 0.73955842 nan nan nan 0.74331734 nan 0.73747052 0.75313338 0.76211609 0.7819578 nan nan 0.75188513 nan 0.79239752 nan nan 0.77631822 0.79678362 0.77506692 nan 0.76253297 nan nan 0.78070497 0.79678362 0.79636543 nan 0.73934987 nan 0.78550664 0.79678362 nan 0.73475479 0.79803666 nan nan nan 0.79260672 0.79573868 nan nan 0.74707757 0.79678362 nan 0.79678362 nan nan nan nan 0.79678362 0.77360423 0.78759519 nan 0.773813 0.77506692 0.7188764 nan nan 0.79678296 nan 0.79532158 nan nan 0.77443974 nan nan 0.78592483 0.75731245 nan 0.78759519 0.79386086 nan 0.7320384 0.79427905 0.79532137 0.73308399 nan 0.73287522 nan 0.75188142 0.77464873 0.79385912 nan 0.7873873 nan nan 0.77527569 0.74916656 nan 0.73182963 0.79594723 nan nan nan nan 0.79239839 0.79782746 nan nan 0.79761869 nan 0.79678362 nan 0.73182963 nan 0.79678362 nan nan 0.7633687 0.76211674 0.79553035 0.76942581 nan 0.79782746 nan 0.79532115 0.73579994 0.7493749 0.79532137 nan nan 0.76420486 0.79532137 nan nan 0.77443996 0.77485771 nan nan nan 0.79678362 0.73872335 0.79678362 0.74436162 0.73559074 nan nan 0.77631822 0.79720028 0.73955886 nan 0.7882215 0.79532158 0.73308377 0.73203884 0.79678362 0.77130625 0.75940144 0.79636543 nan 0.79657485 nan nan nan 0.77318648 nan nan nan] category=UserWarning
Wall time: 3min 20s
RandomizedSearchCV(cv=5, estimator=LogisticRegression(), n_iter=500, param_distributions={'C': array([1.00000000e-04, 2.63665090e-04, 6.95192796e-04, 1.83298071e-03, 4.83293024e-03, 1.27427499e-02, 3.35981829e-02, 8.85866790e-02, 2.33572147e-01, 6.15848211e-01, 1.62377674e+00, 4.28133240e+00, 1.12883789e+01, 2.97635144e+01, 7.84759970e+01, 2.06913808e+02, 5.45559478e+02, 1.43844989e+03, 3.79269019e+03, 1.00000000e+04]), 'max_iter': array([ 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196]), 'penalty': ['none', 'l1', 'l2', 'elasticnet'], 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}, verbose=True)
rs_log_reg.score(X_test,Y_test)
0.8013355592654424
rs_log_reg.best_params_
{'solver': 'liblinear', 'penalty': 'l1', 'max_iter': 46, 'C': 0.615848211066026}
☝ These are the best params we can get for Logistic Regression model with RandomizedSearchCV with a score of 👉 0.8013355592654424 Trained for => 3min 20s
%%time
np.random.seed(42)
# Setting up random hyperparameter search for RandomForestClassifier()
rs_rf = RandomizedSearchCV(RandomForestClassifier(),
param_distributions=rf_grid,
cv=5,
n_iter=500,
verbose=True)
# Fitting random hyperparameter search model for RandomForestClassfier()
rs_rf.fit(X_train, Y_train)
Fitting 5 folds for each of 500 candidates, totalling 2500 fits
F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py:614: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: Traceback (most recent call last): File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_validation.py", line 593, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 393, in fit for i, t in enumerate(trees)) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 1041, in __call__ if self.dispatch_one_batch(iterator): File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 859, in dispatch_one_batch self._dispatch(tasks) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 777, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 208, in apply_async result = ImmediateResult(func) File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\_parallel_backends.py", line 572, in __init__ self.results = batch() File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__ return self.function(*args, **kwargs) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\ensemble\_forest.py", line 169, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 902, in fit X_idx_sorted=X_idx_sorted) File "F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\tree\_classes.py", line 288, in fit raise ValueError("max_features must be in (0, n_features]") ValueError: max_features must be in (0, n_features] FitFailedWarning) F:\ML_Projects\Assignments\env\lib\site-packages\sklearn\model_selection\_search.py:921: UserWarning: One or more of the test scores are non-finite: [ nan nan nan 0.80012674 nan nan nan nan nan nan nan nan 0.78884889 nan nan nan nan 0.79950044 nan 0.75835302 0.77652524 nan nan 0.76294832 nan nan 0.79281767 nan 0.73182963 nan 0.79991776 nan nan nan nan 0.75919158 nan nan nan nan nan 0.80096269 nan nan 0.78863991 nan nan 0.79950044 nan nan nan nan nan nan nan 0.79762043 nan nan nan nan nan 0.80096378 nan 0.79636739 nan 0.79741276 nan nan 0.79344267 nan 0.74707626 nan nan nan nan nan nan nan nan nan nan 0.79657703 nan nan nan nan nan 0.79866406 nan nan nan nan nan nan 0.79678493 nan nan nan nan nan 0.79929167 nan nan 0.79908247 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.79741167 nan nan nan nan nan 0.7942808 0.79970943 nan nan nan nan 0.7974121 nan nan nan nan nan nan nan 0.78675903 nan nan 0.80054559 0.78843223 nan nan nan nan nan nan nan nan 0.79929211 nan nan nan nan nan nan 0.79365187 nan 0.79448607 nan 0.76608268 nan 0.79971117 nan nan nan nan nan nan 0.73182963 nan nan nan nan nan nan nan nan nan 0.7995 nan nan nan nan nan nan nan nan nan 0.79615906 nan nan nan nan nan nan nan 0.79239861 nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.79365078 nan nan nan nan nan nan 0.79615971 nan nan 0.76733486 nan 0.80033595 nan nan 0.79824848 nan 0.79845682 nan nan 0.76002579 nan 0.78968419 nan 0.7957413 nan nan nan nan 0.79803884 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.7921905 nan nan nan nan 0.79636717 nan nan 0.79636739 nan nan nan nan 0.7978292 nan nan nan nan nan 0.79615906 0.79762087 0.79887413 nan nan 0.78738686 nan nan nan nan nan nan 0.78926469 nan nan 0.79678558 nan nan nan nan nan nan nan nan 0.79783008 nan 0.79887283 nan 0.79448891 0.79762131 nan nan nan nan nan nan nan 0.79803906 nan 0.79678427 nan nan 0.79741101 0.79929167 0.77631516 nan nan nan nan nan nan 0.79741188 nan nan nan nan 0.79741254 nan nan 0.79929298 nan nan nan nan nan nan nan 0.79783008 nan 0.7992932 nan 0.79678645 0.80430429 nan nan nan nan nan nan nan 0.79636804 nan nan nan nan nan nan nan nan 0.79824718 nan nan nan nan 0.7967858 nan nan nan nan nan nan 0.79386086 nan nan 0.79929124 0.8003366 nan nan nan nan nan nan 0.79741145 nan nan nan nan nan nan 0.79448782 nan nan nan nan nan nan nan nan nan 0.78801339 nan nan 0.79553057 0.79950088 nan nan nan nan nan 0.79574087 0.74582322 nan nan nan nan nan nan nan nan nan nan nan nan nan 0.79845594 nan nan nan nan nan 0.79845551 nan nan nan nan nan 0.79991776 nan nan nan nan nan nan nan 0.79866428 nan nan nan nan nan nan 0.78237402 nan nan nan nan 0.80138044 nan nan nan 0.8011708 0.79991841 nan nan nan nan nan nan nan nan nan nan nan nan nan 0.73182963 nan nan 0.79929167 0.79657725 0.79135324 0.79072759 nan nan nan nan nan nan nan] category=UserWarning
Wall time: 12min 50s
RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(), n_iter=500, param_distributions={'max_depth': [None, 3, 5, 10], 'max_features': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 7... 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499])}, verbose=True)
# Evaluating the Randomized search RandomForestClassifier model
rs_rf.score(X_test, Y_test)
0.7929883138564274
# Finding the best parameteres
rs_rf.best_params_
{'n_estimators': 135, 'min_samples_split': 61, 'min_samples_leaf': 3, 'max_features': 14, 'max_depth': 10}