Programming Neural Networks¶
This notebook contains the code for my blog on Programming Neural Networks
In [1]:
Copied!
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
import os
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
import os
%matplotlib inline
In [2]:
Copied!
def load_dataset():
train_dataset = h5py.File('/content/drive/MyDrive/Temporary/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('/content/drive/MyDrive/Temporary/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
load_dataset()
def load_dataset():
train_dataset = h5py.File('/content/drive/MyDrive/Temporary/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('/content/drive/MyDrive/Temporary/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
load_dataset()
Out[2]:
(array([[[[ 17, 31, 56],
[ 22, 33, 59],
[ 25, 35, 62],
...,
[ 1, 28, 57],
[ 1, 26, 56],
[ 1, 22, 51]],
[[ 25, 36, 62],
[ 28, 38, 64],
[ 30, 40, 67],
...,
[ 1, 27, 56],
[ 1, 25, 55],
[ 2, 21, 51]],
[[ 32, 40, 67],
[ 34, 42, 69],
[ 35, 42, 70],
...,
[ 1, 25, 55],
[ 0, 24, 54],
[ 1, 21, 51]],
...,
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]]],
[[[196, 192, 190],
[193, 186, 182],
[188, 179, 174],
...,
[ 90, 142, 200],
[ 90, 142, 201],
[ 90, 142, 201]],
[[230, 229, 229],
[204, 199, 197],
[193, 186, 181],
...,
[ 91, 143, 201],
[ 91, 143, 201],
[ 91, 143, 201]],
[[232, 225, 224],
[235, 234, 234],
[208, 205, 202],
...,
[ 91, 144, 202],
[ 91, 144, 202],
[ 92, 144, 202]],
...,
[[ 18, 17, 15],
[ 14, 14, 13],
[ 29, 29, 32],
...,
[ 83, 81, 81],
[ 84, 82, 83],
[ 82, 81, 82]],
[[ 22, 20, 18],
[ 16, 15, 14],
[ 25, 24, 24],
...,
[ 82, 80, 80],
[ 83, 81, 82],
[ 82, 81, 81]],
[[ 45, 43, 39],
[ 61, 59, 54],
[ 81, 78, 74],
...,
[ 83, 82, 81],
[ 84, 82, 82],
[ 82, 80, 81]]],
[[[ 82, 71, 68],
[ 89, 83, 83],
[100, 98, 104],
...,
[131, 132, 137],
[126, 124, 124],
[105, 97, 95]],
[[ 95, 91, 97],
[104, 104, 113],
[110, 115, 126],
...,
[135, 134, 135],
[127, 122, 119],
[111, 105, 103]],
[[ 94, 85, 83],
[ 97, 89, 90],
[110, 109, 115],
...,
[136, 134, 131],
[127, 120, 117],
[116, 108, 104]],
...,
[[ 96, 116, 131],
[ 97, 115, 130],
[103, 123, 139],
...,
[152, 155, 157],
[146, 149, 152],
[130, 133, 134]],
[[ 90, 108, 123],
[ 92, 108, 121],
[100, 119, 134],
...,
[150, 152, 155],
[144, 146, 147],
[134, 135, 134]],
[[ 86, 102, 116],
[ 87, 103, 115],
[ 94, 114, 127],
...,
[154, 156, 160],
[146, 148, 152],
[138, 141, 142]]],
...,
[[[143, 155, 165],
[184, 190, 198],
[142, 149, 155],
...,
[ 99, 92, 102],
[120, 98, 102],
[100, 84, 95]],
[[151, 149, 139],
[173, 179, 185],
[105, 135, 141],
...,
[ 91, 87, 99],
[119, 99, 104],
[120, 95, 101]],
[[204, 190, 185],
[180, 185, 195],
[117, 155, 177],
...,
[ 96, 88, 101],
[125, 103, 110],
[120, 100, 110]],
...,
[[ 41, 80, 116],
[ 41, 80, 116],
[ 41, 78, 115],
...,
[ 63, 75, 98],
[ 60, 72, 98],
[ 60, 70, 96]],
[[ 71, 90, 121],
[ 73, 91, 123],
[ 74, 91, 124],
...,
[ 79, 101, 142],
[ 80, 100, 140],
[ 82, 101, 139]],
[[ 71, 88, 122],
[ 73, 92, 128],
[ 76, 95, 131],
...,
[ 81, 106, 150],
[ 85, 108, 151],
[ 85, 107, 149]]],
[[[ 22, 24, 23],
[ 23, 25, 24],
[ 24, 26, 25],
...,
[ 24, 29, 25],
[ 23, 25, 22],
[ 20, 22, 21]],
[[ 22, 24, 23],
[ 23, 25, 24],
[ 23, 26, 25],
...,
[ 22, 28, 23],
[ 20, 23, 22],
[ 19, 21, 21]],
[[ 22, 24, 22],
[ 23, 25, 24],
[ 23, 26, 25],
...,
[ 23, 27, 23],
[ 20, 23, 21],
[ 18, 20, 19]],
...,
[[ 8, 5, 0],
[ 9, 6, 1],
[ 9, 6, 1],
...,
[ 4, 5, 0],
[ 5, 4, 0],
[ 4, 5, 0]],
[[ 7, 5, 0],
[ 8, 5, 1],
[ 9, 6, 1],
...,
[ 4, 5, 0],
[ 4, 5, 0],
[ 4, 5, 0]],
[[ 7, 5, 0],
[ 8, 5, 0],
[ 9, 6, 1],
...,
[ 4, 5, 0],
[ 4, 5, 0],
[ 4, 5, 0]]],
[[[ 8, 28, 53],
[ 14, 33, 58],
[ 19, 35, 61],
...,
[ 11, 16, 35],
[ 10, 16, 35],
[ 9, 14, 32]],
[[ 15, 31, 57],
[ 15, 32, 58],
[ 18, 34, 60],
...,
[ 13, 17, 35],
[ 13, 17, 35],
[ 13, 16, 35]],
[[ 20, 35, 61],
[ 19, 33, 59],
[ 20, 33, 59],
...,
[ 16, 17, 35],
[ 16, 18, 35],
[ 15, 17, 35]],
...,
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]]]], dtype=uint8),
array([[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0,
0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1,
0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]),
array([[[[158, 104, 83],
[161, 106, 85],
[162, 107, 84],
...,
[170, 120, 100],
[167, 121, 103],
[172, 127, 109]],
[[158, 103, 82],
[160, 104, 82],
[162, 105, 83],
...,
[169, 118, 99],
[164, 117, 98],
[168, 121, 104]],
[[158, 104, 82],
[161, 105, 82],
[162, 105, 83],
...,
[173, 123, 102],
[169, 122, 104],
[168, 122, 104]],
...,
[[102, 68, 52],
[ 44, 31, 23],
[ 28, 23, 20],
...,
[163, 118, 102],
[163, 120, 103],
[166, 121, 105]],
[[ 99, 67, 51],
[ 38, 28, 22],
[ 30, 26, 23],
...,
[161, 117, 100],
[164, 121, 104],
[168, 123, 106]],
[[127, 95, 72],
[ 39, 29, 22],
[ 30, 25, 22],
...,
[165, 122, 105],
[169, 126, 109],
[173, 128, 110]]],
[[[115, 110, 111],
[137, 129, 129],
[155, 146, 145],
...,
[159, 156, 157],
[141, 141, 145],
[121, 122, 127]],
[[123, 118, 120],
[143, 136, 136],
[159, 153, 150],
...,
[167, 164, 165],
[151, 151, 154],
[130, 133, 137]],
[[135, 130, 130],
[150, 145, 141],
[164, 159, 153],
...,
[173, 174, 172],
[160, 162, 162],
[141, 144, 148]],
...,
[[197, 196, 205],
[208, 209, 214],
[215, 216, 220],
...,
[222, 224, 229],
[205, 208, 215],
[185, 189, 197]],
[[190, 192, 199],
[203, 205, 210],
[213, 214, 218],
...,
[217, 220, 225],
[198, 202, 209],
[178, 182, 191]],
[[183, 186, 193],
[197, 199, 205],
[208, 210, 214],
...,
[212, 215, 220],
[192, 196, 203],
[171, 176, 186]]],
[[[255, 253, 254],
[255, 253, 254],
[255, 253, 254],
...,
[197, 178, 118],
[195, 177, 116],
[192, 176, 115]],
[[255, 253, 254],
[255, 253, 254],
[255, 253, 254],
...,
[197, 178, 120],
[195, 176, 118],
[193, 174, 118]],
[[255, 253, 254],
[255, 253, 254],
[255, 253, 254],
...,
[197, 177, 121],
[194, 174, 121],
[190, 171, 122]],
...,
[[ 94, 95, 97],
[102, 104, 108],
[115, 113, 115],
...,
[ 68, 67, 91],
[ 71, 55, 80],
[ 64, 51, 82]],
[[ 68, 71, 69],
[ 75, 79, 80],
[ 82, 91, 91],
...,
[122, 103, 109],
[114, 84, 99],
[ 97, 72, 100]],
[[ 67, 86, 89],
[ 62, 83, 90],
[ 47, 73, 82],
...,
[147, 120, 125],
[142, 110, 118],
[133, 101, 121]]],
...,
[[[ 41, 47, 84],
[ 72, 78, 112],
[103, 102, 124],
...,
[125, 112, 119],
[107, 101, 117],
[ 76, 79, 109]],
[[ 93, 96, 119],
[112, 109, 124],
[130, 122, 136],
...,
[141, 121, 118],
[130, 112, 114],
[122, 109, 117]],
[[119, 114, 123],
[133, 124, 128],
[164, 149, 145],
...,
[187, 160, 135],
[157, 132, 120],
[136, 115, 109]],
...,
[[233, 223, 207],
[235, 226, 218],
[242, 236, 235],
...,
[164, 170, 196],
[189, 185, 196],
[190, 182, 188]],
[[247, 250, 248],
[236, 238, 232],
[219, 215, 219],
...,
[118, 101, 117],
[153, 134, 154],
[174, 146, 156]],
[[253, 254, 254],
[246, 250, 249],
[226, 233, 234],
...,
[154, 111, 93],
[176, 132, 104],
[183, 141, 116]]],
[[[ 18, 18, 16],
[ 35, 36, 31],
[ 54, 57, 52],
...,
[138, 140, 118],
[139, 141, 124],
[130, 129, 114]],
[[ 21, 21, 18],
[ 44, 45, 39],
[ 68, 74, 66],
...,
[128, 131, 109],
[116, 117, 98],
[ 95, 93, 76]],
[[ 30, 31, 26],
[ 54, 58, 52],
[ 99, 110, 104],
...,
[127, 129, 108],
[113, 114, 94],
[ 99, 99, 82]],
...,
[[178, 178, 163],
[161, 163, 146],
[170, 174, 163],
...,
[112, 108, 85],
[149, 150, 131],
[180, 185, 172]],
[[182, 183, 167],
[172, 175, 162],
[170, 173, 162],
...,
[ 88, 90, 77],
[122, 115, 89],
[157, 154, 131]],
[[188, 190, 179],
[173, 175, 163],
[160, 162, 146],
...,
[ 48, 50, 44],
[103, 103, 89],
[144, 137, 108]]],
[[[133, 163, 75],
[ 98, 120, 44],
[108, 132, 47],
...,
[ 96, 138, 97],
[ 96, 146, 109],
[ 81, 132, 101]],
[[ 79, 102, 39],
[ 83, 112, 33],
[ 76, 106, 26],
...,
[ 99, 149, 76],
[ 71, 119, 62],
[ 58, 106, 72]],
[[ 35, 53, 27],
[ 54, 74, 46],
[ 35, 55, 17],
...,
[110, 157, 122],
[ 72, 119, 89],
[ 81, 131, 108]],
...,
[[ 76, 108, 79],
[ 70, 110, 83],
[ 70, 105, 84],
...,
[ 25, 49, 21],
[ 26, 53, 24],
[ 27, 54, 28]],
[[109, 120, 97],
[ 86, 116, 86],
[ 71, 105, 79],
...,
[ 17, 46, 20],
[ 23, 49, 28],
[ 19, 33, 18]],
[[ 97, 117, 100],
[ 70, 108, 75],
[ 75, 99, 69],
...,
[ 8, 33, 12],
[ 13, 35, 18],
[ 5, 22, 5]]]], dtype=uint8),
array([[1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
0, 0, 1, 1, 1, 0]]),
array([b'non-cat', b'cat'], dtype='|S7'))
In [3]:
Copied!
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
# Example of a picture
index = 19
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:,index]) + ", it's a '" + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + "' picture.")
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
# Example of a picture
index = 19
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:,index]) + ", it's a '" + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + "' picture.")
y = [1], it's a 'cat' picture.
In [4]:
Copied!
# Reshape the training and test examples
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
# Reshape the training and test examples
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
train_set_x_flatten shape: (12288, 209) train_set_y shape: (1, 209) test_set_x_flatten shape: (12288, 50) test_set_y shape: (1, 50) sanity check after reshaping: [17 31 56 22 33]
In [5]:
Copied!
train_set_x = train_set_x_flatten / 255.
test_set_x = test_set_x_flatten / 255.
train_set_x = train_set_x_flatten / 255.
test_set_x = test_set_x_flatten / 255.
In [6]:
Copied!
# SIGMOID FUNCTION
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
# SIGMOID FUNCTION
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
In [7]:
Copied!
# initialize_with_zeros
def initialize_with_zeros(dim):
w = np.zeros(shape=(dim, 1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
# initialize_with_zeros
def initialize_with_zeros(dim):
w = np.zeros(shape=(dim, 1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
In [8]:
Copied!
# GRADED FUNCTION: propagate
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = (1 / m) * np.dot(X, (A - Y).T)
db = (1 / m) * np.sum(A - Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
# GRADED FUNCTION: propagate
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = (1 / m) * np.dot(X, (A - Y).T)
db = (1 / m) * np.sum(A - Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
In [9]:
Copied!
# GRADED FUNCTION: optimize
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
w = w - learning_rate * dw # need to broadcast
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
# GRADED FUNCTION: optimize
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
w = w - learning_rate * dw # need to broadcast
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
In [10]:
Copied!
# GRADED FUNCTION: predict
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
# Convert probabilities a[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
# GRADED FUNCTION: predict
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
# Convert probabilities a[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
In [11]:
Copied!
#GRADED FUNCTION: model
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
#GRADED FUNCTION: model
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
In [12]:
Copied!
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
Cost after iteration 0: 0.693147 Cost after iteration 100: 0.584508 Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.214820 Cost after iteration 1100: 0.203078 Cost after iteration 1200: 0.192544 Cost after iteration 1300: 0.183033 Cost after iteration 1400: 0.174399 Cost after iteration 1500: 0.166521 Cost after iteration 1600: 0.159305 Cost after iteration 1700: 0.152667 Cost after iteration 1800: 0.146542 Cost after iteration 1900: 0.140872 train accuracy: 99.04306220095694 % test accuracy: 70.0 %
In [13]:
Copied!
# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
In [14]:
Copied!
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
learning rate is: 0.01 train accuracy: 99.52153110047847 % test accuracy: 68.0 % ------------------------------------------------------- learning rate is: 0.001 train accuracy: 88.99521531100478 % test accuracy: 64.0 % ------------------------------------------------------- learning rate is: 0.0001 train accuracy: 68.42105263157895 % test accuracy: 36.0 % -------------------------------------------------------
To test with your images :
In [15]:
Copied!
m_train = train_set_y.shape[1]
m_test = test_set_y.shape[1]
num_px = train_set_x_orig.shape[1]
m_train = train_set_y.shape[1]
m_test = test_set_y.shape[1]
num_px = train_set_x_orig.shape[1]
In [16]:
Copied!
pip install scipy==1.1.0
pip install scipy==1.1.0
Requirement already satisfied: scipy==1.1.0 in /usr/local/lib/python3.7/dist-packages (1.1.0) Requirement already satisfied: numpy>=1.8.2 in /usr/local/lib/python3.7/dist-packages (from scipy==1.1.0) (1.19.5)
In [19]:
Copied!
import imageio
# preprocessing the image to fit our algorithm.
fname = "/content/drive/MyDrive/Temporary/download.jpg"
image = np.array(imageio.imread(fname))
my_image = scipy.misc.imresize(image, size=(num_px, num_px)).reshape((1, num_px * num_px * 3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
import imageio
# preprocessing the image to fit our algorithm.
fname = "/content/drive/MyDrive/Temporary/download.jpg"
image = np.array(imageio.imread(fname))
my_image = scipy.misc.imresize(image, size=(num_px, num_px)).reshape((1, num_px * num_px * 3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
y = 1.0, your algorithm predicts a "cat" picture.